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ABSTRACT

Survival prediction using whole slide images (WSIs) is a
complex and difficult task, as handling gigapixel WSI di-
rectly is computationally impossible. In the past few years,
people have worked out multiple instance learning (MIL)
strategies to deal with WSIs, i.e., splitting WSI into many
patches (instances) and aggregating features across patches.
Moreover, to better predict the survival outcome of patients,
different modalities have been explored, among which gene
features are used the most frequently. In this paper, we ex-
plore a graph-based strategy to handle WSIs and investigate
a transformer-based strategy to combine different modali-
ties for survival prediction. Moreover, clinical data was also
adopted and different encoding manners of clinical informa-
tion were explored. Experiments on two public datasets from
The Cancer Genome Atlas (TCGA) demonstrate the effec-
tiveness of the proposed graph-transformer framework for
survival prediction.

Index Terms— Survival Prediction, Whole Slide Image,
Multi-modality, Transformer, Graph Neural Network

1. INTRODUCTION

Although computer vision has been in rapid development
in general with novel and revolutionary methods proposed
one after another, how to deal with gigapixel whole slide
image (WSI) remains challenging and complex. The diffi-
culty comes from: (1) WSIs are too large so processing them
directly is computationally infeasible and (2) WSIs usually
only have slide-level labels (e.g., a binary label or a cancer
type label for one WSI) as the detailed pixel-level annotations
are expensive and hard to obtain, which means tasks on WSIs
are weakly supervised tasks in nature.

The past few years have witnessed large improvements
in processing WSIs. People usually adopted the multiple
instance learning (MIL) frameworks to deal with gigapixel
WSI, which can be described as two stages: (1) splitting
WSIs into bags of patches (instances) and extracting features
on those patches, (2) aggregating features across instances
to acquire global features for slide-level prediction [1, 2].

Although the coarse framework has handling WSIs is estab-
lished, representation learning is still being explored. At the
bag (WSI) level, conventionally popular methods are based
on sets, which simply don’t take the order and dependency
within a bag (i.e, across instances) into consideration, and
hence it induces permutation-invariant feature aggregation
on instances [3, 4]. However, since set-based methods as-
sume neither dependency nor ordering across instances, these
methods lack the ability to utilize the interactions between
instances (e.g., interactions across cells in different patches),
and the whole topology structure of WSI is ignored although
this problem could be alleviated to some extend when com-
bining set-based methods with attention mechanism.

Recently, graph-based methods have emerged, by which
people not only focus on feature extraction and aggregation
of patches but also explore the topology structure of the WSI
as a whole [5]. To better make use of multi-scale and het-
erogeneous information of WSIs, some researchers propose
network architecture to exploit hierarchical features as well as
spatial structures for different resolutions [6, 7]. From the per-
spective of graph-based methods, we regard a WSI as a graph
and patches as nodes of the graph, which has proven to sur-
pass the state-of-the-art performance using set-based methods
on some datasets. At the instance (patch) level, how to en-
code information about different patches has been a classic
question. People have worked out lots of methods to encode
information on patches, ranging from simple CNN to more
complex networks [1, 8]. Apart from that, people consider
using multi-modality methods to boost performance, among
which many works have been done to fuse gene features into
pathology (i.e., WSI features) since tumors are often corre-
lated with genes [9]. However, people seldom consider using
other information like clinical information of patients. And
how to effectively combine different modalities is still worth
exploring.

In this paper, we focus on multi-modal WSI survival pre-
diction and present a novel graph-transformer architecture to
effectively learn the slide-level representation of WSI and in-
tegrate multi-modal information. To utilize the spatial infor-
mation of different patches in WSI, we formulate WSI as a
graph data structure and employ a graph convolutional layer
to conduct local feature aggregation.



We then adopt a transformer architecture to effectively
aggregate the WSI node features from a global perspective.
More importantly, we encode the clinical data and genomic
data information as extra feature tokens and adopt the trans-
former architecture to learn the relationship between them
with WSI features, so that we can effectively integrate multi-
modal data for more accurate prediction. Experiments on two
public TCGA datasets demonstrate the effectiveness of the
proposed graph-transformer framework for survival predic-
tion.

2. METHODS

2.1. Problem Formulation

We use Multiple Instance Learning (MIL) as our framework
to handle WSIs for weakly supervised learning, which could
be formulated as:

F (Xi) = h(g {(f(xij)}) xij ∈ Xi

where Xi = {xi1, ..., xiN} ∈ RN×d1 represents the bag of
instance features of the i-th sample, and xij stands for the j-th
patch in the i-th sample. We define function f : Rd1 → Rd2

as the encoding function to map raw features into embed-
dings. The function g : RN×d2 → Rd3 is an aggregating
function to aggregate features across patches to get our over-
all features. And h : Rd3 → R#class is a task-specific func-
tion, it could be a softmax function to output the probabilities
of all classes for classification tasks.

For the survival prediction task, instead of estimating the
survival time of patients, we want to get an ordinal risk value
acquired through the survival function:

S(T ≥ t,Xi) =

t∏
i=1

(1−H(T = t|T ≥ t,Xi))

To simplify the task, we divide survival time into intervals
(represented as i ∈ {0, 1, 2, 3} in the formula) according to
quartiles so that we can use accumulative multiplication of H
to obtain S instead of integration.

2.2. Graph-Based WSI Feature Aggregation

To better utilize the spatial information of WSIs, rather than
treat different patches within a bag as independent from each
other using set-based methods, we use graph-transformer ar-
chitecture [5]. This model regards WSIs as graphs, splits
WSIs into patches, and treats them as nodes of graphs. Based
on the spatial structure of patches, nodes are connected as a
graph, then a WSI is converted to a graph G = (V,A), where
V = {v1, v2, ..., vN} is the set of nodes denoting patches and
containing node features v⃗i ∈ Rd2 , and A is the adjacency
matrix. Aij = 1 if node vi and vj are adjacent to each other.
To extract features from raw image data of patches as node

features, we use pre-trained KimiaNet as our feature extrac-
tor [10]. Since every patch has 8 neighbors at most, the sum
of each row or column of A is at least 1 and at most 8.

Then we pass the graph through a graph convolutional
(GC) layer to get denser and more representative features
[11]. The basic process during which the GC layer imple-
ments the message passing and aggregation could be formu-
lated as:

H(l+1) = ReLU(D̃− 1
2 ÃD̃−rac12H(l)W (l))

Ã = A + I is the adjacency matrix with self-connections
added. D̃ii =

∑
j Ãij and W (l) is a trainable matrix. H(0)

is initialized as the feature matrix X = [v⃗1, v⃗2, ..., v⃗N ]T ∈
RN×d2 . After a GC layer, we use mincut pooling to get our
final graph tokens, the loss of which is unsupervised and dif-
ferentiable and is derived from mincut optimization objective:
partitioning node set V in K disjoint subsets by removing the
minimum volume of edges [12].

2.3. Clinical and Genomic Data Encoding

Apart from pathological features, people often use gene fea-
tures as another modality to boost performance [9, 13]. In this
paper, we use gene data and clinical information of patients
besides pathological features. Since clinical and gene data
are both tabular data in nature, we adopt TabNet to encode
them as dense embeddings. TabNet uses sequential atten-
tion to choose which features to reason from at each decision
step with an encoder-decoder structure and it is proven em-
pirically to surpass state-of-the-art tree-based methods when
handling some tabular data [14]. To extract latent informa-
tion contained in tabular data, both the encoder and decoder
of TabNet could be used for iterations (3 iterations in our ex-
periment for both). We then use the reconstructed features
output by the decoder as our encoded embeddings. For the
clinical information, besides encoding using TabNet, we also
try encoding them directly (denoted as emb in section 3): for
categorical attributes, we use categorical embeddings while
we transfer numeric attributes to categorical ones according
to their distributions.

2.4. Transformer-based Multimodal Fusion

When combining different modalities with pathological fea-
tures, we simply treat gene embeddings or clinical embed-
dings extracted above as tokens and concatenate them with
previous graph tokens as well as a CLS token. Figure 1 dis-
plays how we combine pathological features with gene data
using TabNet. For gene data or clinical data extracted by Tab-
Net, it will yield one reconstructed embedding to be treated
as one token while for clinical data encoded directly, each at-
tribute will become one embedding (e.g., 9 attributes yield 9
tokens).
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Fig. 1. Illustration of our transformer-based framework for the survival of the prediction by combining WSI with gene profile
with TabNet. Pathological features are extracted by GraphTransformer and genomic features are encoded by TabNet and they
are both treated as tokens to be combined and then fed into a Transformer layer.

Lastly, we pass all the tokens through a transformer layer
[15, 16], where feature nodes are regarded as tokens in a se-
quence and the adjacency matrix is treated as positional infor-
mation and self attention is used to capture importance across
patches. Given that x = {e1, ..., eN} ∈ RN×D is the se-
quence of feature nodes (tokens) extracted from the graph,
qkv could be computed using the standard self-attention (SA)
method (N is the number of tokens).

Based on the similarity between tokens, we can get at-
tention weights {Aij}. Multihead Self-Attention (MSA) is
also utilized to combine information extracted by m number
of heads. The whole basic framework of a transformer layer
could be formulated as:

q = xWq, k = xWk, v = xWv Wq,Wk,Wv ∈ RD×Dh

A = softmax(qkT /
√

dh), SA(x) = Av A ∈ RN×N

MSA(x) = [SA1(x)U1; ...;SAm(x)Uk] Ui ∈ RDh×D

t0 = [xclass;h1; ...;hN ], hi = eiE E ∈ RD×D
′

tl
′
= MSA((LN(tl−1)) + tl−1 l = 1...L

tl = MLP (LN(tl
′
)) + tl

′
l = 1...L

where LN denotes Layer Normalization, MLP denotes a
multi-layer perceptron and L is the number of MSA blocks.
In the end, we get our output:

H = Sigmoid(LN(tL
(0)))

which serves as the hazards of patients. The whole framework
is trained in an end-to-end manner.

3. EXPERIMENTS

3.1. Datasets

For this work, we use Lung Adenocarcinoma (LUAD) and
Stomach Adenocarcinoma (STAD) datasets from The Cancer
Genome Atlas (TCGA), a public data consortium including
matched WSIs, and clinical and gene data. Clinical informa-
tion contains a patient’s age, race, gender, etc. And for gene
data, we selected the most strongly expressed 250 genes. Be-
fore analyzing these datasets, we filter out little WSIs, which
contain less than 100 nodes, to ensure data quality. LUAD
contains 317 patient samples with 822 WSIs (approx 35 GB)
and an average bag size of 1546 patches (nodes). STAD con-
tains 372 patient samples with 397 WSIs (approx 39 GB) and
an average bag size of 3002 patches. For each dataset, we di-
vide patients into four intervals according to the quartiles of
their survival time.



Table 1. Experiment Results (c-index ± a standard error of a mean)
Modalities and Models LUAD STAD
WSI(ABMIL) 0.5377 ± 0.0153 0.5208 ± 0.0229
WSI(GraphTransformer) 0.5576 ± 0.0556 0.5468 ± 0.0422
WSI(GraphTransformer) + Clinical Info (TabNet) 0.5367 ± 0.0272 0.5566 ± 0.0506
WSI(GraphTransformer) + Clinical Info (Emb) 0.5962 ± 0.0194 0.5527 ± 0.0418
WSI(GraphTransformer) + Gene (TabNet) 0.5605 ± 0.0630 0.5432 ± 0.0222
WSI(GraphTransformer) + Gene (TabNet) + Clinical Info(Emb) 0.5804 ± 0.0358 0.5581 ± 0.0427

Fig. 2. Kaplan-Meier Analysis based on risk stratification on LUAD dataset. The survival curves are plotted using risk scores
given by models w.r.t. ground-truth survival time (in months). The Logrank test is performed to compare the two survival
distributions statistically.

3.2. Evaluation Metrics

On each dataset, we choose five-fold cross-validation to eval-
uate our models and concordance index (c-index)

c =
#concordant pairs

#concordant pairs+#discordant pairs

is used as our standard to measure the performance of risk
prediction.

3.3. Experiment Results

The experimental results are shown in Table 1. Firstly, we
compare our graph-based method with the state-of-the-art set-
based method Attention-based Deep Multiple Instance Learn-
ing (ABMIL) [3]. An increase of 3.7% and 5.0% is achieved
respectively on LUAD and STAD datasets. We also compare
different modalities based on our graph-based models. Our
experiments show that when other modalities are added, per-
formance could improve most of the time, and a maximum in-
crease of 6.9% and 2.1% is achieved respectively. Moreover,
we evaluate the model’s ability in risk stratification, which is
widely used for survival analysis models [7, 9]. We stratify
patients into two groups according to the median of the pre-
dicted risk scores. From Figure 2, we can see that graph-based
methods could separate patients into low and high risk groups
better than the set-based method ABMIL. Judging from the
p-values of Logrank test, graph-based methods are much bet-
ter than ABMIL, and adding different modalities could bring
higher performance with smaller p-values too.

4. CONCLUSION

In this paper, we compare the graph-based method graph-
transformer with the traditional state-of-the-art set-based
method ABMIL for WSI analysis. We also propose a new
transformer-based framework to effectively combine dif-
ferent modality data for survival prediction. Extensive ex-
periments carried out prove that graph transformer has better
performance than ABMIL. Empirically, with other modalities
added with pathological features, modals could improve their
performance in general. However, it’s not always promising
to combine other modalities and even doing so would hurt
the performance, which indicates that how to extract features
from genes and clinical information and how to combine dif-
ferent modalities remain open and challenging. Future work
would focus on how to extract features of different modalities
better, as well as investigating fusion methods of different
modalities.
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